

Teaching Computational Archival Science (CAS): Context, Pedagogy, and Future Directions in Metadata

Richard **MARCIANO**

University of Maryland
marciano@umd.edu

Advanced Information Collaboratory
<https://ai-collaboratory.net/cas/>

October 21, 2024

Dublin Core™ Metadata Initiative (DCMI) 2024:
Metadata Innovation: Trust, Transformation, and Humanity

This talk builds on an international collaboration: US/Canada

Teaching Computational Archival Science: Context, Pedagogy & Future Directions

Victoria L. Lemieux (U. British Columbia, CANADA -- School of Information)
Richard Marciano (U. Maryland, USA -- College of Information)

Submitted to ***iConference 2025***

<https://ai-collaboratory.net/wp-content/uploads/2024/09/Teaching-Computational-Archival-Science-Context-Pedagogy-and-Future-Directions-2024-submitted.pdf>

Professor
MAS Program Chair
Blockchain@UBC Cluster Lead

Where: We illustrate the introduction of CAS into graduate archival training: *case studies*
a. University of Maryland
b. University of British Columbia
c. Building and Sustaining Educator Networks

We propose CAS graduate competencies

Computational Training Initiatives:

U.S.:

- I. TALENT Network (2018-2026):
 - 10 INFO Schools
- II. LEADING Network (2018-2025):
 - Trained 89 Fellows
 - Relied on 26 Mentors
- III. DCIP Certificate Program (2019-2024):
 - 60+ Students
- IV. DCIC Center (2015-2020):
 - 300 Students

INTERNATIONAL:

- V. Advanced Information Collaboratory - AIC (2020-present):
 - 50+ Partners

Rest of Talk:

Metadata to support GenAI & LLMs

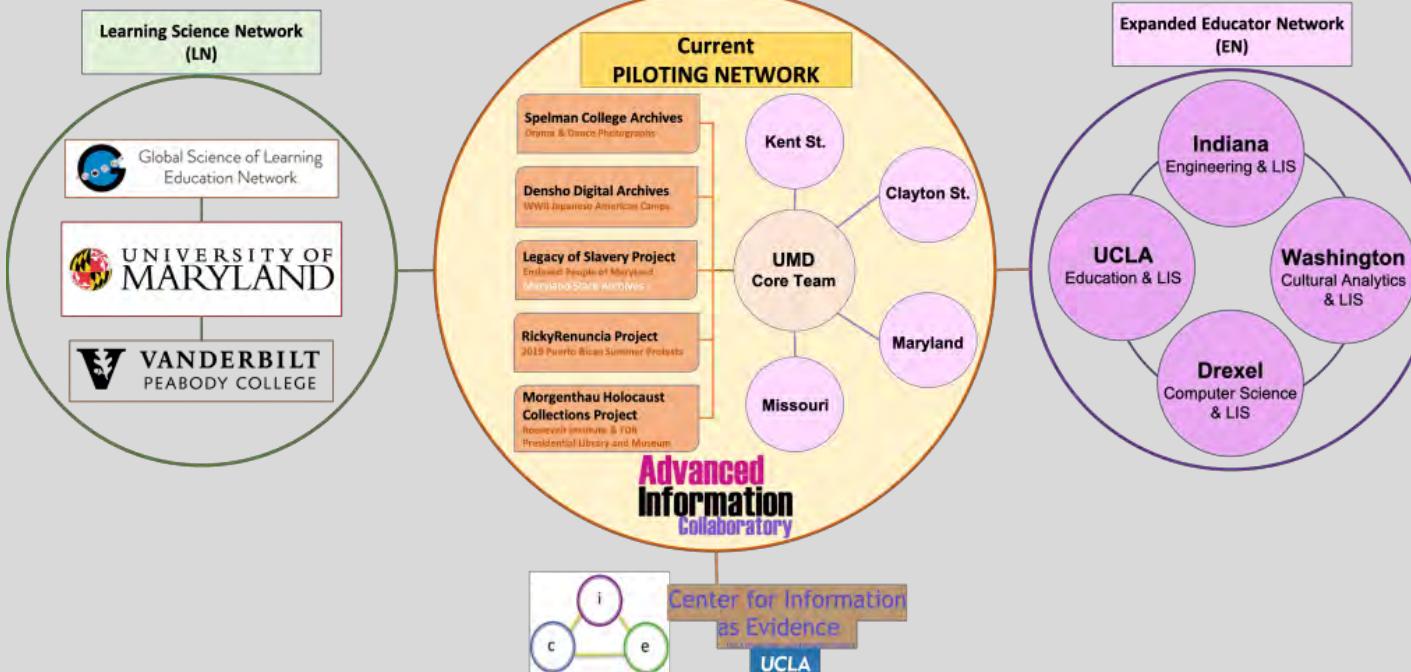
- **OAIS & Computational Archival Processing**
- **Computational Archival Science (CAS)**
- **GraphRAG** (Retrieval Augmented Generation with Graphs)

I. TALENT Network

Training of Archival & Library Educators w.
iNnovative Technologies

“Modernizing MLIS Teaching”

INSTITUTE of
Museum and Library
SERVICES


Funded by U.S. IMLS Laura Bush
21st Century Librarian
Implementation Grant

Spelman College Fall DATATHON (Nov. 1, 2024)

Computational Treatments of the Legacies of Black History

Featuring 3 one-hour sessions on:

- Legacy of Slavery Manumission records w. Interactive dashboards
- Legacy of Slavery Domestic Traffic Ads w. ChatGPT
- Urban Renewal w. GenAI

1. IMLS 2018-2020: CT-LASER

Developing a Computational Framework for Library and Archival Education (\$100K)
Planning grant.
https://ai-collaboratory.net/wp-content/uploads/2020/11/Final_Report_r.pdf

2. IMLS 2020-2024: PILOTING Network

Pilot Study with 4 US iSchools & 5 Archives (\$300K)
Piloting grant.
<https://ai-collaboratory.net/projects/piloting-network/>

3. IMLS 2022-2025: TALENT Network

Promoting the Training of Archival & Library Educators w. iNnovative Technologies (\$400K)
National implementation grant.
<https://ai-collaboratory.net/projects/talent-network/>

4. IMLS 2024-2026: GenAI-4-Arch

Harnessing Generative AI to Support Exploration and Discovery in Library and Archival Collections (\$194K)
<https://www.imls.gov/grants/awarded/lg-256565-ols-24>

HERITAGE-AI Initiative:

Harnessing Enhanced Research & Instructional Technologies for Archival Generative Exploration - using AI
<https://heritage-ai.org/>

Jane Greenberg

Professor @ Drexel U.

Director @ Metadata
Research Center

Co-Chair @ DCMI 2024
Invited Panels & Talks

II. LEADING: LIS Education And Data Science Integrated Network Group [*IMLS Drexel: 2020-2025*] (\$887K)

LEADS: Library Education And Data Science [*IMLS Drexel: 2017-2020*] (\$313K)

- 14 **core team members** Drexel iSchool faculty and partners leads UCSD, OCLC, and Univ. of New Mexico
- 26 **mentors** from leading libraries, archives, data/research centers and agencies across the U.S.

<https://mrc.cci.drexel.edu/leading/>

“Enhancing Doctoral and Early Career Professional Training
in Data Science”

→ 89 Fellows

LEADS/LEADING Sites

6,882 views
Published on June 2, 2023

SHARE

LEADS vs. LEADING

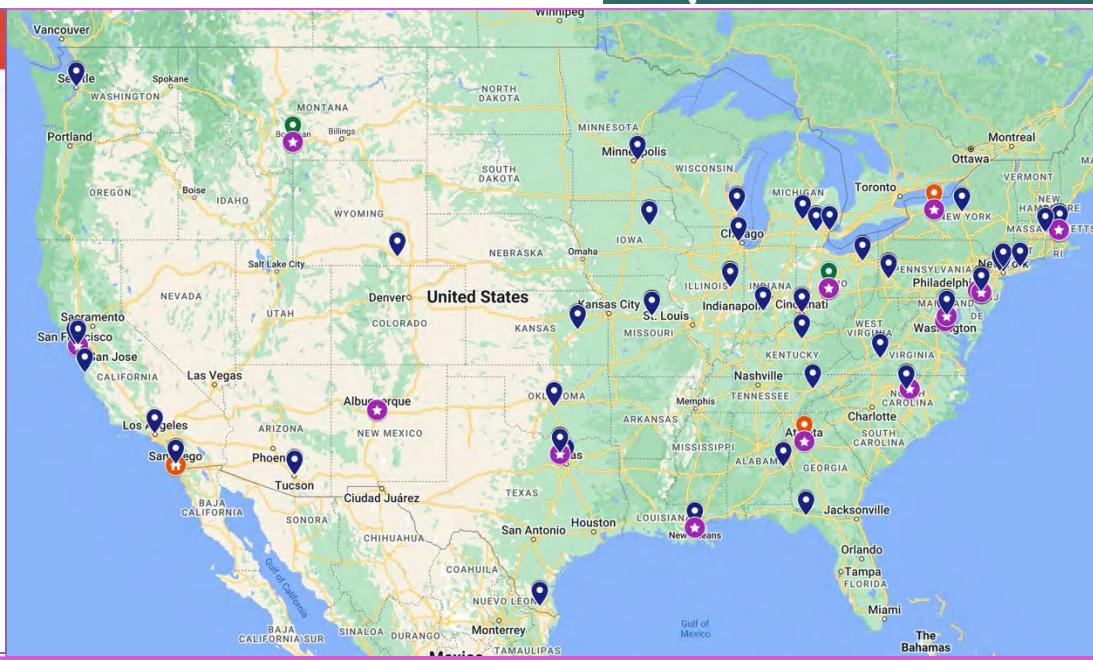
LEADS

LEADING

Data Updated Needed Fellow Home Instit...

PhD

Early-to-Mid Career


Hubs

Hub

Map_Data.csv

Fellow Home Institution

Mentor Site

CURRENT / RECENT PROJECTS

EDUCATION: \$2.2M

- Developing a Computational Framework for Library and Archival Education [*IMLS: 2018-2020*]
- Piloting a Collaborative Network for Integrating CT into Library and Archival Ed. and Practice [*IMLS: 2020-2024*]
- Training of Archival & Library Educators w. iNnovoative Technologies [*IMLS: 2022-2023*]
- LIS Education And Data Science Integrated Network Group, LEADING [*IMLS Drexel: 2020-2025*] (\$887K)
- Library Education And Data Science, LEADS [*IMLS Drexel: 2017-2020*] (\$313K)

INFRASTRUCTURE: \$14M

- WIN: a Window Into Neuroregulation [*NSF Convergence: 2019-2024*]
- Developing a Digital Asset Management System for Additive Manufacturing [*ARL: 2020-2024*]
- Developing a Digital Asset Management System for the Mary McLeod Bethune Historic Site [*NPS: 2019-2022*]
- Improving Fedora 4 to Work with Web-Scale Storage and Services, DRASTIC [*IMLS: 2017-2020*]
- Brown Dog: “Making Sense of Billion-Record Archives” with the NCSA) [*NSF: 2013-2018*]

SOCIAL JUSTICE, HUMAN RIGHTS, CULTURAL HERITAGE: \$3M

- Using AI and ML to Optimize Information Discovery in Under-utilized, Holocaust-related Records [*Kurtz Foundation*]
- Harnessing Generative AI to Support Exploration and Discovery in Library and Archival Collections [*IMLS proposal*]
- International Research Portal for Holocaust-Era Cultural Property [*Kurtz Foundation*]
- Measuring the Impact of Urban Renewal [*NSF*]
- Computational Thinking to Unlock the Japanese American WWII Camp Experience [*UMD-FIA*]
- Computational Treatments to re-member the Legacy of Slavery (CT-LOS) [*Kurtz Foundation*]
- Testbed for the Redlining Archives of California’s Exclusionary Spaces (T-RACES) [*IMLS*]
- Mapping Inequality – Redlining in New Deal America [*U. Richmond Mellon*]

III. DCIP: Digital Curation for Information Professionals

Certificate Program

January 8 – February 16, 2024

Introduction to Digital Curation (6 weeks)

February 26 – May 17, 2024

Tools and Software for Digital Curation (12 weeks)

May 27 – August 16, 2024

Implementing Digital Curation in the Workplace (12 weeks)

Over 60 projects

- <https://ischool.umd.edu/academics/certificates-non-degree-study/digital-curation-for-information-professionals-certificate/>

Examples of Student Projects:

- 2024: <https://ai-collaboratory.net/2024/09/03/2024-dcip-cohort-presents-their-capstone-projects/>

- 2023: <https://ai-collaboratory.net/2023/08/14/2023-dcip-cohort-presents-their-capstone-projects/>

- *Synthetic data and generative AI: an interactive learning experience*
- *Digital preservation of legacy file formats*
- *Buried While Black – Payne Cemetery: The disinterment of a historically black cemetery in Washington, DC*

- *Exploring Indexing Methods for Handwritten Text*
- *Columbia MD Archives digital curation manual*

- 2022: <https://ai-collaboratory.net/2022/09/07/2022-dcip-cohort-presents-their-capstone-projects/>

- 2021: <https://ai-collaboratory.net/2021/08/23/dcip-cohort-2021-presents-capstone-projects/>

CAS

Computational Archival Science

The DCIC is pioneering advances in computational treatments of archival and cultural content.

See our CAS portal for the latest developments:

<http://dcicblog.umd.edu/cas/>

What is CAS?

An interdisciplinary field concerned with the application of computational methods and resources to large-scale records/archives processing, analysis, storage, long-term preservation, and access, with the aim of improving efficiency, productivity and precision in support of appraisal, arrangement and description, preservation and access decisions, and engaging and undertaking research with archival materials.

CAS Founding Partners:

Richard Marciano, U. Maryland

Mark Hedges, King's College London (UK)

Vicki Lemieux, U. British Columbia (Canada)

Maria Esteva, Texas Advanced Computing Center (TACC)

Michael Kurtz, U. Maryland

Bill Underwood, U. Maryland

Greg Jansen, U. Maryland

Mark Conrad, National Archives and Records Administration (NARA)

curateLab

Hornbake South 4110

Digital lab for group learning, collaborative design, and hands-on digital curation project development (23 seats, 3 interactive screens, 12 workstations with 12TB of storage).

digitizationLab

Hornbake South 4110D

Document scanning, image manipulation, and archival ingestion facility for group projects.

serverfarm

Atlantic Building

On-campus virtual machine farm for research data processing, storage, and hosting (15TB storage, 2 Dell servers, VMware-powered).

cloudLab

Amazon Cloud

Dashboard-enabled virtual computing lab in the cloud for creating Windows/Ubuntu instances using Amazon Web Services (AWS).

dataCave

UMD Cyberinfrastructure Center at the RiverTech Bldg

DRAS-TIC

Digital Repository At Scale That Invites Computation (To Improve Collections): a petascale archival storage and preservation repository (based on the **DRAS-TIC** open-source software [NoSQL Cassandra database] and computational infrastructure (4 Dell nodes).

dcic

digital curation innovation center

<http://dcic.umd.edu>

Mission:

Be a leader in the digital curation research and educational fields, and foster interdisciplinary collaborations using Big Records and Archival Analytics with public / industry / government partnerships.

Goals:

Sponsor interdisciplinary projects that explore the integration of archival research data, user-contributed data, and technology to generate new forms of analysis and historical research engagement, particularly in the arenas of social justice, human rights, and cultural heritage.

Motto:

"Integrating Education and Research"

COLLEGE OF
INFORMATION
STUDIES

David Weintrop:

- CT-STEM
Practices Taxonomy

CITATION

Bill Underwood:

- CAS#4:
Analysis of the remaining eleven workshop papers indicates that the research that they report also involves CT.

https://ai-collaboratory.net/wp-content/uploads/2020/02/16_OpenMic_Bill-Underwood.pdf

- CT-LASER Practice:
Motivation for Integrating CT into UMD MLS program in Library and Archival Studies, with examples of CT Practices being used in

Archival Studies Research
https://ai-collaboratory.net/wp-content/uploads/2020/04/Underwood_CompThinkInArchResearch.pdf

Computational archival science is a blend of: (1) computational & (2) archival thinking.

Data Practices

Collecting Data

Creating Data

Manipulating Data

Analyzing Data

Visualizing Data

Modeling & Simulation Practices

Using Computational Models to Understand a Concept

Using Computational Models to Find and Test Solutions

Assessing Computational Models

Designing Computational Models

Constructing Computational Models

Computational Problem Solving Practices

Preparing Problems for Computational Solutions

Programming

Choosing Effective Computational Tools

Assessing Different Approaches/Solutions to a Problem

Developing Modular Computational Solutions

Creating Computational Abstractions

Troubleshooting and Debugging

Systems Thinking Practices

Investigating Complex Systems as a Whole

Understanding the Relationships within a System

Thinking on Multiple Levels

Communicating Information about a System

Defining Systems and Managing Complexity

Example 1: Fall 2019

Experiential, Interdisciplinary & Team-based Learning: Computational Thinking in Archives

“Reframing Digital Curation Practices through a Computational Thinking Framework”

Richard Marciano, et al., 2019 IEEE International Conference on Big Data, 4th CAS Workshop, Dec. 11, 2019, Los Angeles, CA.

https://ai-collaboratory.net/wp-content/uploads/2020/04/ReframingDC-UsingCT_final.pdf

October 28-29, 2019: “Datathon” at the Maryland State Archives

<https://ai-collaboratory.net/projects/legacy-of-slavery/student-led-datathon-at-the-maryland-state-archives/>

- **Paper:** Gnanasekaran, R.K. and Marciano, R., (2021). *Piloting Data Science Learning Platforms through the Development of Cloud-based interactive Digital Computational Notebooks*. https://ai-collaboratory.net/wp-content/uploads/2021/10/ISGC2021_Gnanasekaran_Marciano.pdf.
- **Video:** <https://www.youtube.com/watch?v=cNBc0AY-r-k>
- **Jupyter Notebook:** <https://cases.umd.edu/github/cases-umd/Legacy-of-Slavery/blob/master/index.ipynb>

(Jupyter) Digital Notebooks

Teaching and Learning with Jupyter

<https://jupyter4edu.github.io/jupyter-edu-book/>

Educators are rapidly adopting Jupyter Notebooks for:

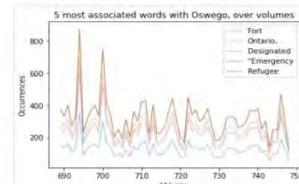
- * teaching
- * use in the classroom
- * developing teaching materials
- * creating computational stories

See: <https://cases.umd.edu>

CASES

Computational Archival Science Educational System

FAQ Contribute



 Advanced Information
Collaboratory

CASES Projects

Web Scraping the Maryland State Archives
CASES:revealing_untold_stories

Redlining in Baltimore
CASES:racial_zoning

NARA Catalog Access APIs
CASES:revealing_untold_stories

prev next

Teaching Resources

- Quick Introduction to Jupyter Notebook (video)
- Jupyter/Python Notebook Quick Start Guide
- Teaching and Learning with Jupyter
- How to Contribute a CASE File (TBD)
- Intro to Python (fr. Machine Learning for Artists)
- CASE Module Template
- Computational Practices in STEM Teaching

Computational Archival Science

- CAS Portal
- IMLS-funded Computational Framework for Library-Archival Education (CT-LASER)
- IMLS-funded Piloting an Online National Collaborative Network for Integrating Computational Thinking into Library and Archival Education and Practice (Piloting Network)

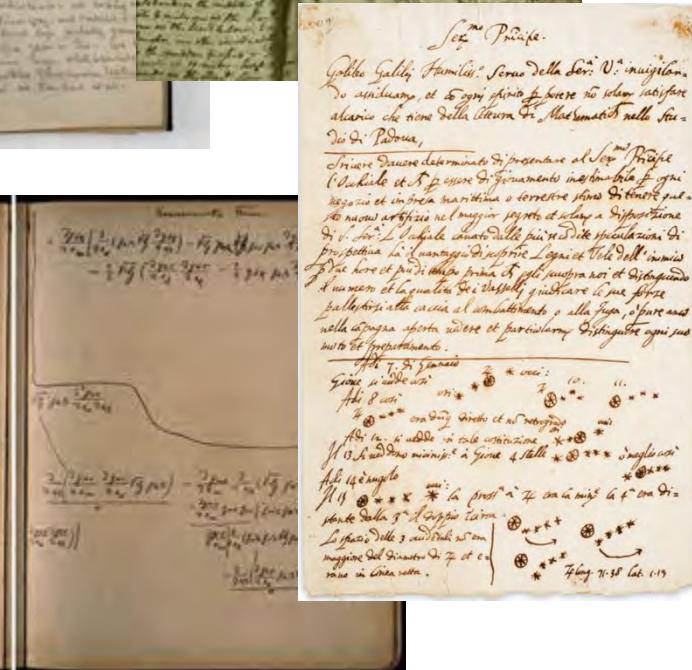
CASES Themes

Computational Practices

► Data Practices

The nature of how data are collected, created, analyzed, and shared is rapidly changing primarily due to advancements in computational technologies.

- Collecting Data
- Creating Data
- Manipulating Data
- Analyzing Data
- Visualizing Data


► Modeling and Simulation Practices

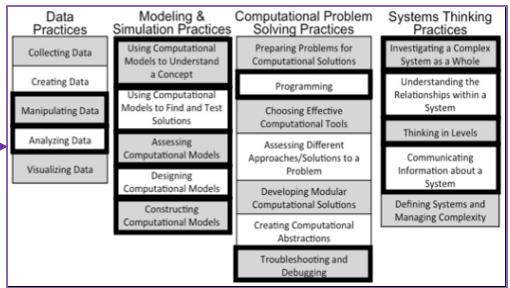
► Computational Problem Solving Practices

► Systems Thinking Practices

Archival Knowledge

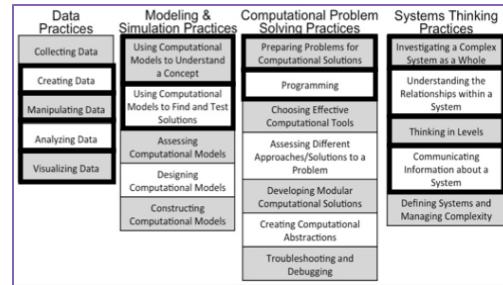
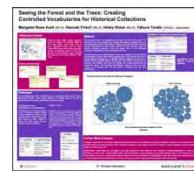
Historical Lab Notebooks

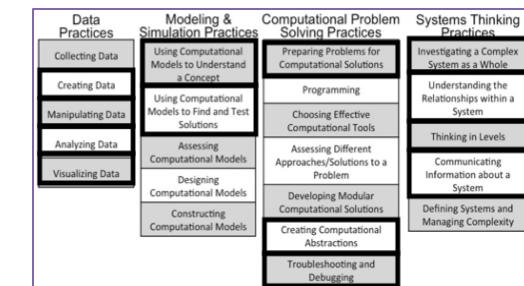
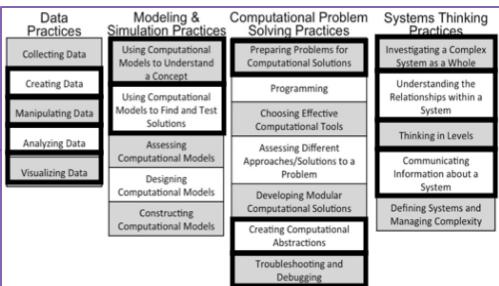
Paper-based Lab Notebooks:


- Used in science research
- Represent a record of:
 - observations
 - experiments
 - ideas
 - notes
 - formulas
 - data

Electronic Lab Notebooks:

- patient medical records



1. Developing Name Registries



2. Integrating Vital Records

3. Designing Controlled Vocabularies

4. Mapping Events and People

5. Connecting Events and People

DEVELOPING NAME REGISTRIES

Andy Jose SILVA / Emery PATTERSON, Mary MCKINLEY
iSchool / MLIS

INTEGRATING VITAL RECORDS

James SANTOS, Genevieve KOCIENDA / Kamithika JAIN
ISdS / MLIS / MIM

DESIGNING CONTROLLED VOCABULARIES

Takao TUKARI / Margaret Rose HUNT, Hannah FRISCH, Hilary See Yin SHIU
iSchool / Japanese

MAPPING EVENTS & PEOPLE

Cancer MULLANE, Kristen SCHRAMS, Marisol VASQUEZ / Christi LIU, Sada XU
iMEIS / BECM

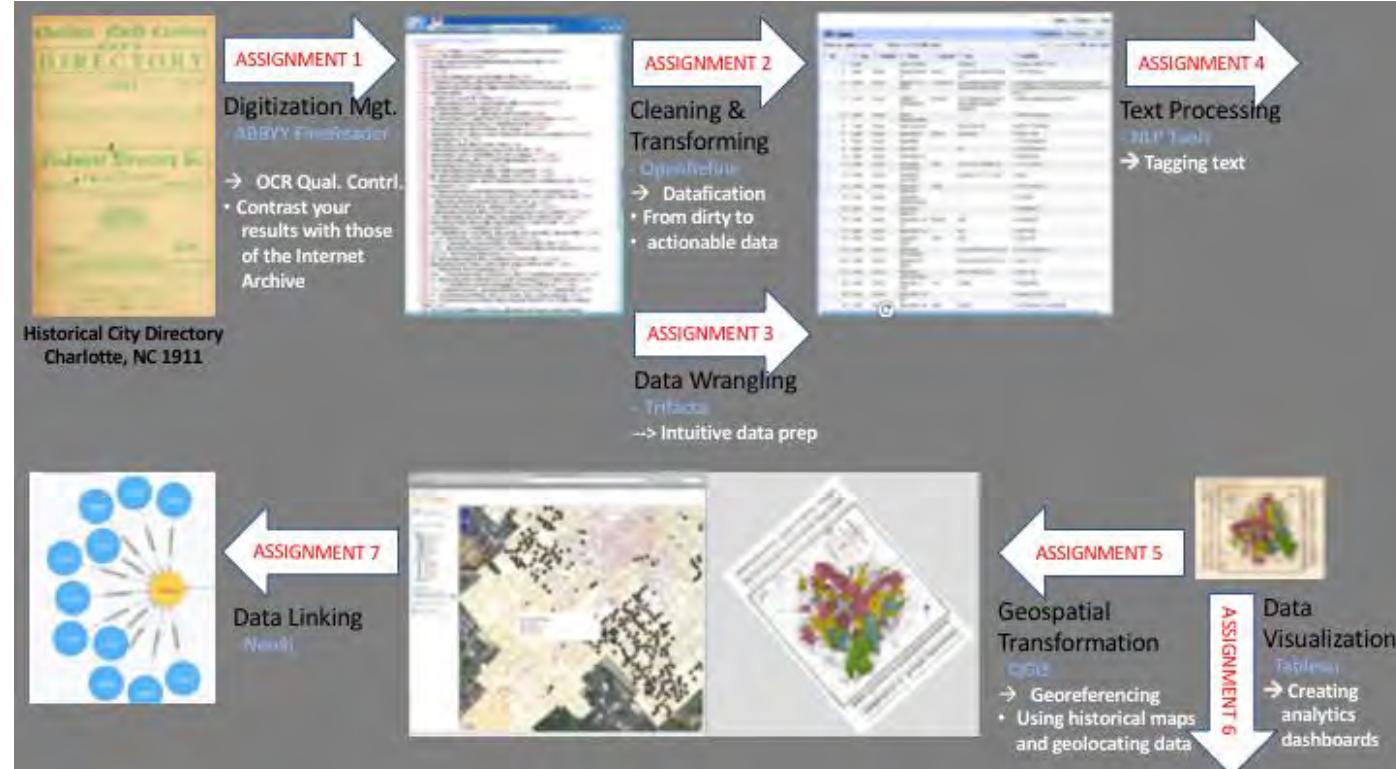
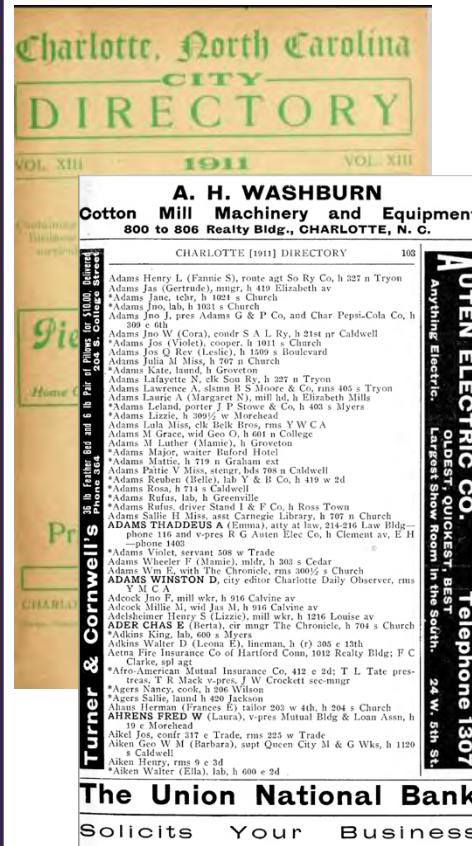
CONNECTING EVENTS & PEOPLE

Sanket AGARWAL / Shweta KHAOORI / Chanchal MEK, Meenakshi SINGH / Debolina PRADHAN
CS / MLIS / MLIS / MLIS

PROJECT:

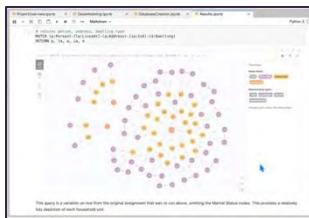
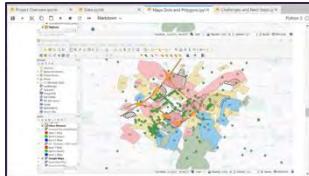
Computational Thinking to Unlock the Japanese American
WWII Camp Experience (w. [Densho.org](https://densho.org))

https://ai-collaboratory.net/projects/ct-ja_ww2_camps/

EVENT: Resistance at Tule Lake: A Conversation with the Filmmaker and iSchool Digital Curators (and Film Viewing)

Example 2: Spring 2023 Graduate Course in the MLIS Program – Implementing Digital Curation



- ***Teaching and Learning with Archival Materials through the Development of Interactive Computational Notebooks***, P. Piety, M. Conrad, R. Marciano, I. Cornfield, E. Dallimore, R. Fettig, E. Hansen, H. Kemp, T. Turabi (2023). Chapter Submission for the 2023 Archives and Primary Source Handbook, peer-reviewed open-access NewPrairiePress textbook. Link: https://ai-collaboratory.net/wp-content/uploads/2023/10/Piety_Conrad_Marciano_et_al-FINAL.pdf

See: **videos and notebooks** at: <https://ai-collaboratory.net/2023/05/11/may-11-2023-computational-storytelling-datathon/>

Table 2 - Comparison of student final projects

Student Project Title	Computational Thinking															Computational Technologies																
	Data Practices					Modeling & Simulation				Computational Problem Solving				Systems Thinking Practices		Tools			Technical Sophistication													
	CLD	CRD	MD	AD	VD	UaC	F&T	ACM	DCM	CCM	PCS	PRG	CET	ADS	DMS	CDA	TAD	ISW	URS	TIL	CIS	DSC	OCR	Tableau	Excel	Neo4j	Open Refine	QGIS	Pandas	Code Boxes	Dataset Scale	Use of Code
A. Expanding the Network: Modeling Relationships with Neo4j				X					X	X							X	X					X	X					No	Small	1	
B. Revisualizing Geographic Disparities: Examining Trends in Racial and Economic Inequality on the Streets w/o GIS			X	X	X	X	X					X		X				X	X				X					No	Full	1		
C. Mad or Madam: Investigating an Undefined Data Term	X	X	X	X	X	X																	X	X				No	Full	1		
D. Race, Marriage, and Profession: Data at Scale Test Case			X	X	X	X	X										X		X	X		X	X			Tableau	Full	2				
E. Building a Bigger Picture: A Case Study of Combining the General City and Business Directories	X		X	X	X	X											X		X	X		X	X			Tableau	Full	2				
F. Religious Life in 1911 Charlotte, NC		X	X	X	X	X											X					X	X			Tableau	Full	2				
G. Gender, Race, and Archival Silences		X	X	X	X	X																X	X			Tableau	Full	2				
H. Conceptualizing Prosperity: A Case Study Analyzing Housing through Job Types			X	X	X	X											X	X	X	X		X	X			Tableau	Full	2				
I. Visualizing Neighborhood Demographics		X	X	X							X						X	X	X	X		X	X	X		Tableau	Full	2				
J. Mapping Over Time in Charlotte NC: Population, Redlining, and Urban Renewal	X	X		X	X		X	X	X	X	X					X	X	X	X	X	X	X	X	Python / Pandas Lib.	Full	3						

The Future is Here & Now

- Fundamental changes to the way we acquire, manage, and present cultural collections
- COVID-19: impact on access to archives, libraries, museums

HERE:

- US: **OMB M-23-07 Update to Transition to Electronic Records**
 - **By June 30, 2024**, Federal agencies must manage all permanent records in an **electronic format** for eventual transfer and accessioning by NARA.
 - **After June 30, 2024**, Federal agencies must transfer all permanent records in an electronic format and with appropriate metadata.
- **NARA Budget Estimates 622 Years to Process Backlogged FOIA Requests at Just Two Presidential Libraries**
 - A “FOIA backlog of an estimated 183 million pages at the George W. Bush Library and [a] 128-million-page backlog at the Barack Obama Library” alone. At current rates, it would take NARA 622 years to declassify the pending declassification requests just these two presidential libraries.
 - NARA presently holds 13.5 billion pages, **only about 2% of which is in digitized form**. This is just one among many thousands of archival repositories; with more than 25,000 such repositories in just the United States.

NOW:

- “An **IMPERATIVE** for educating the archivists and records managers of the future for the digital world” [Mark Conrad]

The **AIC** was launched at The Alan Turing Institute in London, UK on Jan. 20, 2020. It brings together partners from leading academic and cultural institutions from six continents. Its goals are to:

1. **EXPLORE** the opportunities and challenges of "disruptive technologies" for archives and records management (digital curation, machine learning, AI, etc.).
2. **PURSUE** multidisciplinary collaborations to share relevant knowledge across domains.
3. **LEVERAGE** the latest technologies to **unlock the hidden information** in massive stores of records.
4. **TRAIN** current and future generations of information professionals to think computationally and rapidly adapt new technologies to meet their increasingly large **and complex workloads**.
5. **PROMOTE** ethical information access and use.

AIC Founding Partners:

Dr. Richard Marciano
Professor
UMD iSchool (US)

Mark Conrad
Archives Specialist
NARA - former (US)

Dr. Eirini Goudourali
Head of Dig. Research Progs.
TNA (UK)

Dr. Jane Greenberg
Professor
Dir. Metadata Research Center
Drexel U. (US)

Dr. Mark Hedges
Dep. of Dig. Hum.
King's College London (UK)

Greg Jansen
Senior Res. Soft. Architect
UMD iSchool (US)

Dr. Michael Kurtz
Asst. Archivist for Rec. Services
NARA - former (US)


Dr. Victoria Lemieux
Assoc. Professor
Blockchain@UBC Cluster
lead (Canada)

Dr. Bill Underwood
Res. Scientist
GTRI Res. Sci (former)
UMD iSchool (US)

Dr. Lyneise Williams
Associate Prof. Art History
Founder VERA Collaborative
UNC Chapel Hill (US)

Home

North America:

- **MEDiAL Lab @U. Maryland:** Dr. Phil Piety
- **NARA (former):** Bruce Ambacher
- **UCLA:** Dr. Anne Gilliland
- **Kent State U.:** Dr. Karen Gracy
- **U. Missouri:** Dr. Sarah Buchanan
- **Clayton State U.:** Dr. Joshua Kitchens
- **The Smithsonian Institutions (NMAH):** Bob Horton
- **Harvard Library:** Ceilyn Boyd
- **UC Santa Barbara:** Marisol Ramos
- **UC San Diego:** Dr. Andrea Chiba
- **US Holocaust Memorial Museum:** Michael Levy
- **Densho.org:** Geoff Froh
- **Maryland State Archives:** Chris Haley & Maya Davis
- **Spelman College:** Holly Smith
- **Puerto Rican Spring Project:** Marison Ramos, Irmarie Fraticelli, Joel Blanco

South America:

- **U. de Brasilia:** Dr. Cláudio Gottschalg-Duque

UK:

- **Loughborough U.:** Lise Jaillant
- **The Alan Turing Institute:** David Beavan
- **UK TNA:** Pip Wilcox, Mark Bell, Paul Young, Jenny Bunn & Sonia Ranade
- **Oxford U.:** Dr. David De Roure
- **European Holocaust Research Infrastructure:** Dr. Reto Speck

Europe:

- **Hamburg U. Archives:** Francesco Gelati
- **University of Amsterdam:** Dr. Tobias Blanke
- **INESC-ID Portugal:** Dr. Diogo Proença

Africa:

- **U. South Africa:** Dr. Shadrack Katuu

Asia:

- **Central U. of Gujarat (India):** Dr. Bhakti Gala
- **Centre for Dev. of Advanced Computation (India):** Dr. D. Katre
- **Indian Inst. of Management:** Dr. H. Anil Kumar
- **Kyushu U. (Japan):** Dr. Yoichi Tomiura & Dr. Emi Ishita

Australia:

- **U. Canberra:** Dr. Tim Sherratt

LTAR PROJECTS

I.
WWII
Japanese
American
Incarceration

II.
Legacy
of
Slavery

III.
American
Responses
to the
Holocaust

IV.
Urban
Renewal

V.
Redlining

10 years

7 years

4 years

11 years

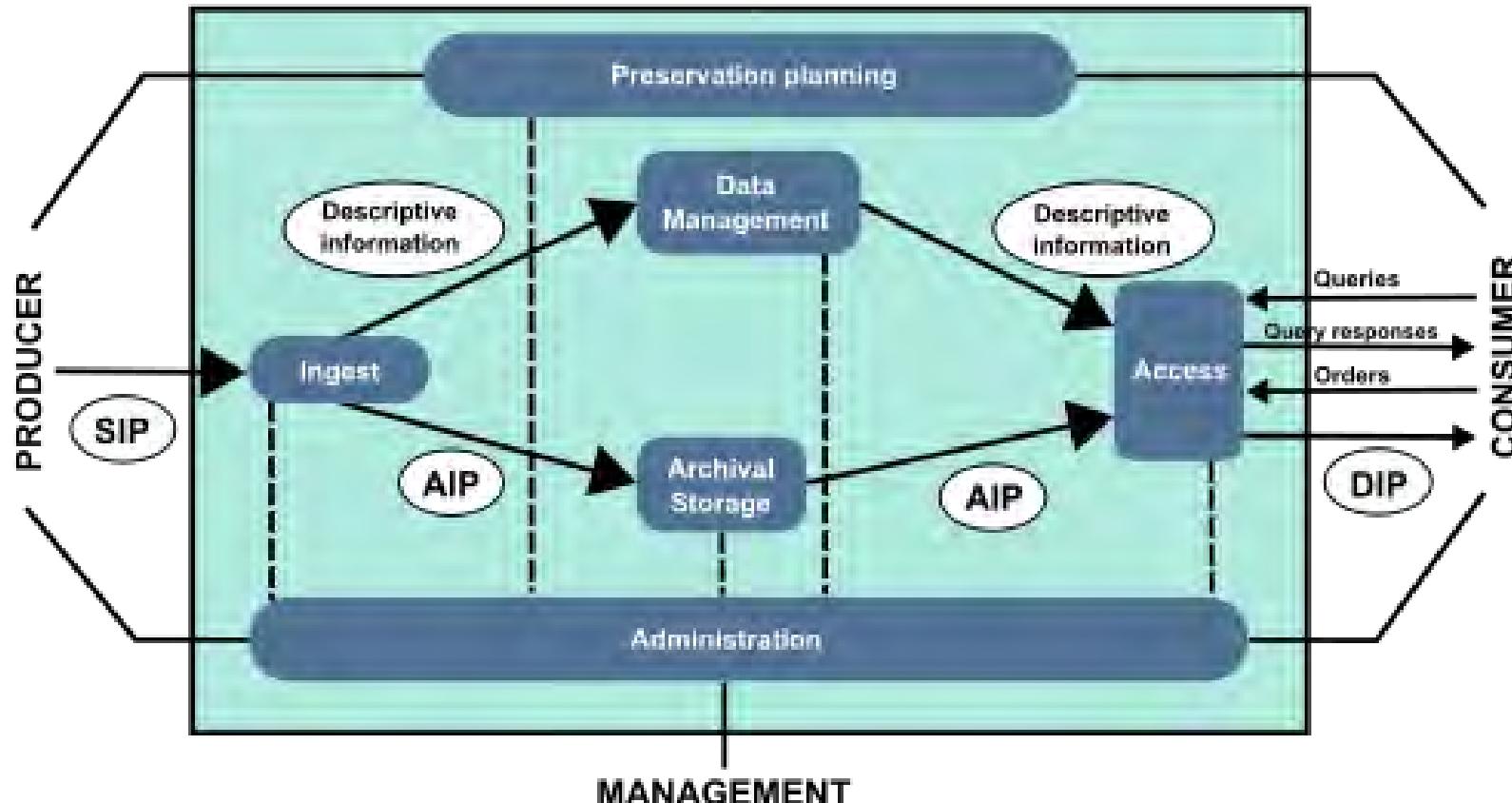
25 years

Example:

- **SUMMER 2024: MLIS Students Engage w. Innovative Technologies to Explore the Future Processing of Archival Collections through *spatial, graph & genAI* Techniques:** <https://ai-collaboratory.net/2024/07/09/summer2024/>
- **Victoria Lemieux @ UBC:** “Archival Competencies Framework for Training in AI/ML”
(using concepts of trustworthiness and authenticity of records)

How Do Computational Processes Touch Upon Archival Work?

Preparing Archivists in Computational Thinking & Innovative Technologies

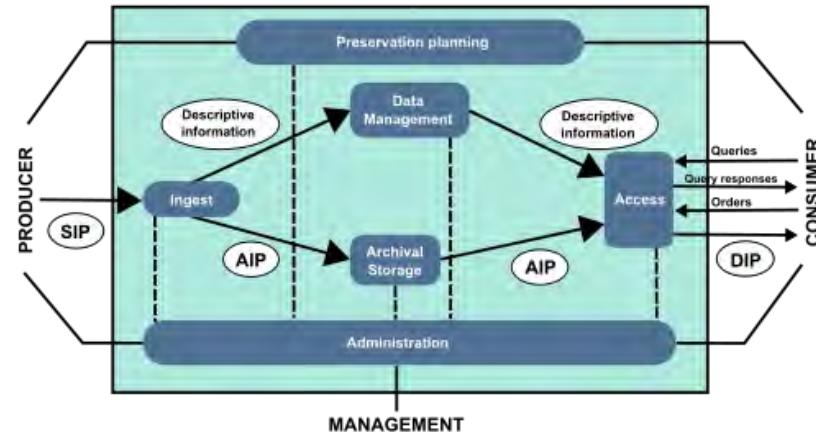

<https://www.youtube.com/watch?v=ZdLJHQLbR4k>

Anne Gilliland (UCLA) & Richard Marciano (UMD),

International Conference of “Technology, Society, Humanities:
Digital Intelligence Empowers the Modernization of Archival Work”

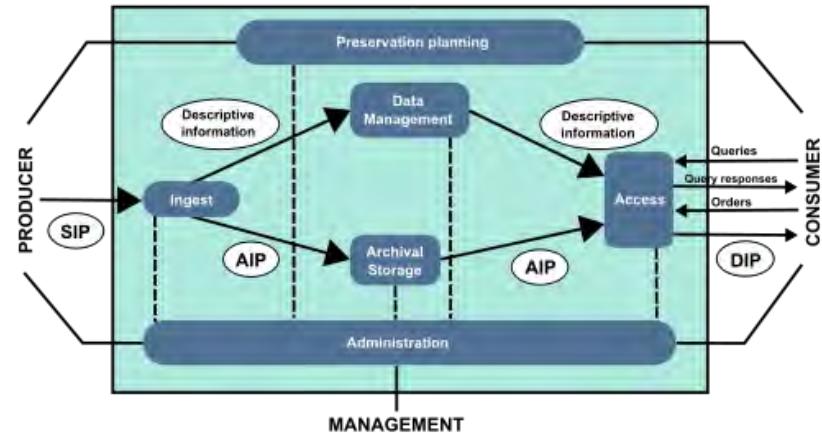
Shandong U., China. Oct. 26, 2023.

Open Archival Information System (OAIS)

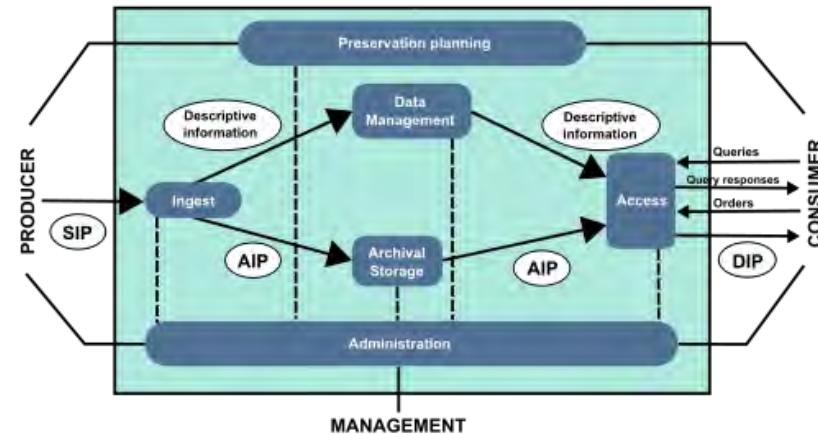

On the producer or creator side:

Computational processing is used by bureaucracies and research:

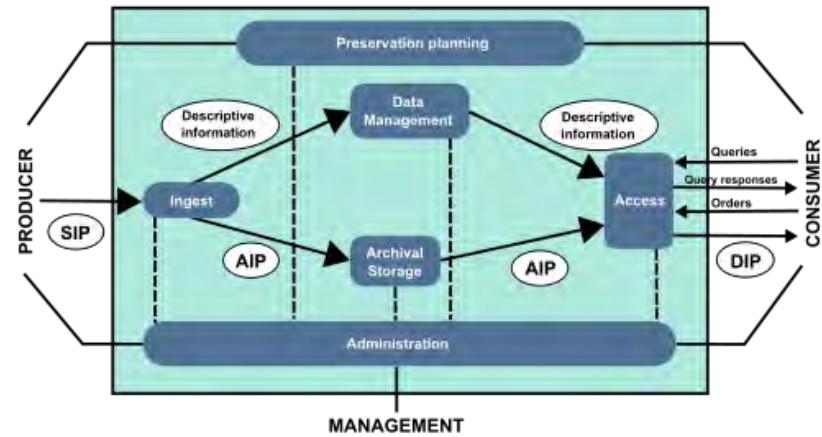
- to create/gather and analyze data
- in ways that should but may not always generate records for evidentiary, accountability and transparency purposes
- to manage active data and records


Archivists and records managers may be responsible for ensuring that:

- accountable and transparent records are created and are archivable or disposable
- the algorithms used to produce, process and dispose of the records are also accountable, transparent, accurate and ethical

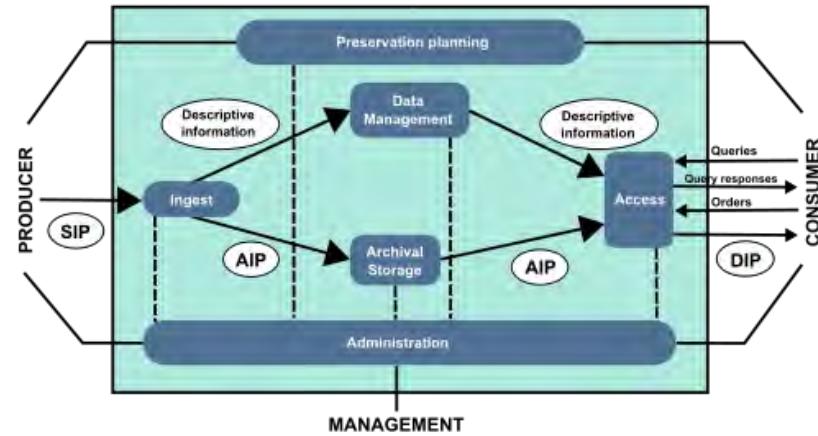

On the consumer or user side:

- Computational processing is being used in the digital humanities and STEM fields to collate, cross-compile and analyze digitized and born-digital archival materials in new ways in order to gain new insights
- Archivists have to prepare digital archival content for end-user computational processing, e.g.,
 - by ensuring archival content can be compiled, manipulated and curated at a very granular level
 - by adding descriptive metadata that supports new kinds of disciplinary research questions

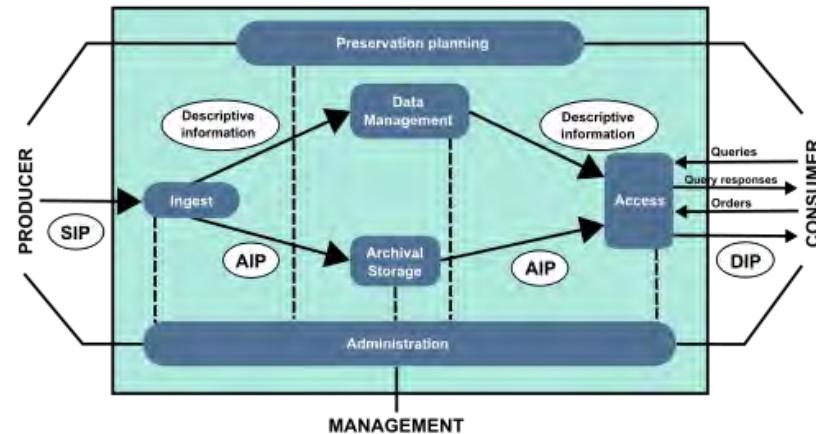

During archival appraisal and ingest:

- Human appraisal of digitally-born records is becoming increasingly impossible due to massive volume, complexity and contingency, e.g., digital communications such as email and social media; networked and Cloud-based recordkeeping
- Archivists will need to employ computational analysis to identify, ingest, and secure relationships between records and their components

During archival preservation:


- Manual preservation of increasing volumes of digital archival content does not scale
- Archivists will need to employ computational approaches in activities such as integrity checking, regular migration processes and allocating and tracking storage

During archival processing:


Archivists will use computational processes to:

- automate aspects of description, maintain administrative metadata, surface previously hidden aspects of collections, identify and explain anomalies, and curate collections to support specific researcher/consumer needs

At the access interface:

- Archivists will use computational processes to:
 - establish consumer identity and privileges regarding collection access
 - search for, retrieve and package content that matches consumer queries and specifications
 - ensure privacy and security conditions governing dissemination and access of collections are met

Foundational Paper on Computational Archival Science (CAS): Apr. 2018, Marciano et al.

“Archival records and training in the Age of Big Data”

In *Re-Envisioning the MLS: Perspectives on the Future of Library and Information Science Education.*

<https://ai-collaboratory.net/wp-content/uploads/2020/10/Marciano-et-al-Archival-Records-and-Training-in-the-Age-of-Big-Data-final.pdf>

Eight Case Studies w. examples of interdisciplinary efforts to address the changing context of recordkeeping and character of records:

1. **Evolutionary prototyping** and **computational linguistics**,
2. **Graph analytics**, **digital humanities** and **archival representation**,
3. **Computational finding aids**,
4. **Digital curation**,
5. **Public engagement** with (archival) content,
6. **Authenticity**,
7. Confluences between archival theory and computational methods: **cyberinfrastructure and the Records Continuum**,
8. **Spatial and temporal analytics**.

Each of the case studies concludes with a **“Takeaways for CAS/MLS Education”** statement.

BROAD ARCHIVAL FUNCTION

Appraisal

Accessioning

Arrangement

Description

Preservation

Access

Records management

CAS TOPICS

Iterative design
Computational thinking
NLP

Graph analytics

Computational finding aids

Digital curation

Public engagement

Authenticity

Archival theory
Computational methods

Spatial analytics
Temporal analytics

What is CAS?

GOAL: Explore computational treatments of archival and cultural content

GOOGLE GROUP: computational-archival-science@googlegroups.com

Working Definition of Computational Archival Science:

(R. Marciano et al. 2016, amended by N. Payne in 2018)

- A transdisciplinary field grounded in archival, information, and computational science that is concerned with the application of computational methods & resources, design patterns, sociotechnical constructs, and human-technology interaction, to large-scale (*big data*):
 - records/archives processing, analysis, storage, long-term preservation, and access problems,
- with the aim of improving and optimizing efficiency, authenticity, truthfulness, provenance, productivity, computation, information structure & design, precision & human technology interaction in support of:
 - acquisition, appraisal, arrangement & description, preservation, communication, transmission, analysis & access decisions.

CAS PORTAL:

<https://ai-collaboratory.net/cas/>

* Workshops:

- 50+ workshops since 2016
- 9 CAS @ IEEE Big Data Conf.
w. 150+ papers

Lessons learned from:

- **CAS#1**: 2016 in Washington, DC
- **CAS#2**: 2017 in Boston
- **CAS#3**: 2018 in Seattle
- **CAS#4**: 2019 in LA
- **CAS#5**: 2020 in Atlanta
- **CAS#6**: 2021 in Orlando
- **CAS#7**: 2022 in Osaka, Japan
- **CAS#8**: 2023 in Sorrento, Italy
- **CAS#9**: 2024 in Washington, DC

- * Presentations
- * Publications
- * Infrastructure

<https://ai-collaboratory.net/cas/cas-workshops/2024-9th-cas-workshop/>

IEEE Big Data 2024: CAS #9

- **Mon., Nov. 4, 2024 (final):** Due date for full workshop papers submission
- **Fri., Nov. 15, 2024:** Notification of paper acceptance to authors
- **Wed., Nov. 20, 2024 (hard deadline):** Camera-ready of accepted papers
- **Tue., Dec. 17, 2024:** Day-long CAS workshop (in person) in Washington DC, USA

RESEARCH TOPICS COVERED:

- **Application of analytics to archival material**, including AI, ML, text- & data-mining, sentiment analysis, network analysis.
- **Analytics in support of archival processing**, including e-discovery, identification of personal information, appraisal, arrangement and description.
- **Scalable services for archives**, including identification, preservation, metadata generation, integrity checking, normalization, reconciliation, linked data, entity extraction, anonymization and reduction.
- **New forms of archives**, including Web, social media, audiovisual archives, and blockchain.
- **Cyber-infrastructures for archive-based research** and for development and hosting of collections
- **Big data and archival theory and practice**
- **Digital curation and preservation**
- **Crowd-sourcing** and archives
- **Big data and the construction of memory and identity**
- **Specific big data technologies** (e.g. NoSQL databases) and their applications
- **Corpora and reference collections** of big archival data
- **Linked data** and archives
- **Big data and provenance**
- **Constructing big data research objects** from archives
- **Legal and ethical issues** in big data archives

Records Management Journal (Emerald Publishing)

Special 2020 Issue on:

Disruptive technologies for archives & records management and records professionals

Editors:

Julie McLeod, *Northumbria University, UK*

Richard Marciano, *University of Maryland, USA*

Summer 2020: Volume 30, Issue 2 & Issue 3

<https://www.emerald.com/insight/content/doi/10.1108/RMJ-07-2020-057/full/html>

<https://www.emerald.com/insight/publication/issn/0956-5698/vol/30/iss/3>

- Algorithm produced records
- Explainable Artificial Intelligence
- Natural Language Processing
- Automated Appraisal
- Internet-of-Things in the Archives
- Managing IoT-data for Gov. Agencies
- Collaboration between AI and Archival Science
- Preserving Virtual Reality
- Record Linking
- Mapping Archival Catalogs from Trees to Networks
- Blockchain and Records Management
- A Code of Ethics for the Digital Age

ACM Journal on Computing and Cultural Heritage (JOCCH)

Special 2022 Issue on:

Computational Archival Science (CAS)

Guest Editors:

Mark Hedges, *King's College London, UK*

Eirini Goudarouli, *The National Archives, UK*

Richard Marciano, *University of Maryland, USA*

Vol. 13, Issue 1 (Feb. 2022) – Issue 3 (Sep. 2022)

https://ai-collaboratory.net/2020/05/21/jocch-cas_call_for_papers/

<https://dl.acm.org/toc/jocch/2022/15/1>

<https://dl.acm.org/toc/jocch/2022/15/3>

Compendium of Core Computational Archival Science (CAS) Papers

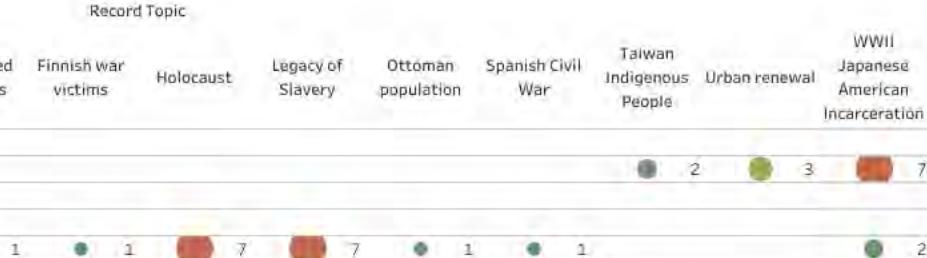
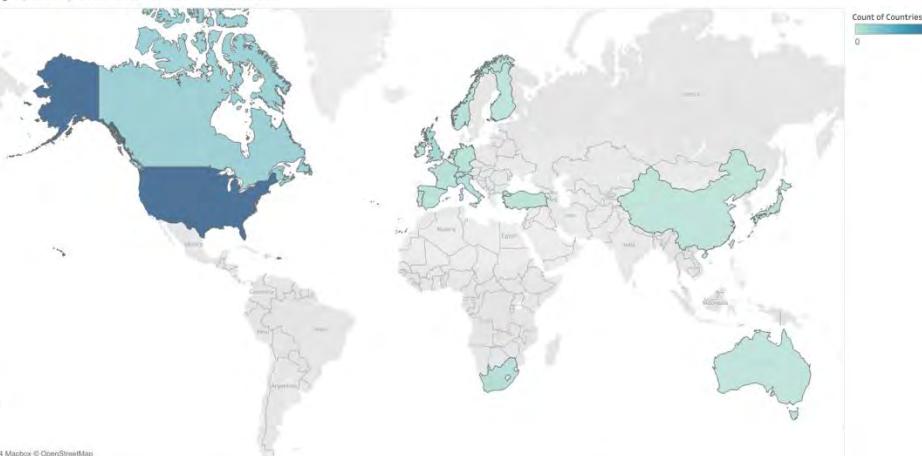
https://docs.google.com/spreadsheets/d/1oCVCWpik_zjdilh9iXh2KITZ7LIOVIt/edit?usp=sharing&ouid=105652788602997060030&rtpof=true&sd=true

1	2	3	IEEE Big Data Conf.: Computational Archival Science (CAS) Workshops		4	5	6	7	8	9	10	ANALYSIS					
			#	Paper Title								Countries	Paper count	BROAD ARCHIVAL FUNCTION	CAS TOPICS	EXTENDED CAS TOPICS	SOCIAL JUSTICE TOPICS
16-1	IEEE Big Data 2016 - Washington D.C., USA	Exploring archives with probabilistic models: Topic Modelling for the valorisation of digitised archives of the European Commission	Belgium, Germany	10	Description Access	NLP											Textual Records
16-2	Traces through Time: A Probabilistic Approach to Connected Archival Data		UK		Description Access	NLP											Textual Records
16-3	Opening Up Dark Digital Archives Through The Use of Analytics to Identify Sensitive Content		USA		Description Access	Graph analytics	AI/ML										Textual Records
16-4	Computational Provenance in DataONE: Implications for Cultural Heritage Institutions		USA		Description Preservation Access	Computational finding aids											Textual Records
16-5	Content-based Comparison for Collections Identification		USA		Records management	Computational methods											Data Files
16-6	Breaking Down the Invisible Wall to Enrich Archival Science and Practice		USA		Description	NLP Graph analytics											ALL
16-7	Mind the explanatory gap: Quality from Quantity		USA		Records management	Computational thinking											ALL
16-8	Understanding Computational Web Archives Research Methods Using Research Objects		UK		Description Access	Digital curation											Web Pages
16-9	Appraising Digital Archives with Archivematics		Canada		Appraisal Preservation	Digital curation											ALL
16-10	Mining and Analysing One Billion Requests to Linguistic Services		Germany		Description Access	NLP											ALL
17-1	IEEE Big Data 2017 - Boston, USA	Building new knowledge from distributed scientific corpora: HERBADROP & EUROPEANA, Two concrete case studies for exploring big archival data	France, NL	14	Description	Computational methods											Photographs & other Graphic Materials
17-2	An Infrastructure and Application of Computational Archival Science to Enrich and Integrate Big Digital Archival Data: Using Taiwan Indigenous Peoples Open Research Data (TIPD) as an Example		Taiwan		Description	Spatial analytics											Textual Records Maps & Charts
17-3	Computational Curation of a Digitized Record Series of WWII Japanese-American Internment		USA		Description Access	NLP Graph analytics Spatial analytics											Textual Records Maps & Charts
17-4	The Cybernetics Thought Collective Project: Using Computational Methods to Reveal Intellectual Context in Archival Material		USA		Access	NLP	AI/ML										Textual Records
17-5	Towards Automated Quality Curation of Video Collections from a Realistic Perspective		USA		Appraisal Preservation	Computational methods	AI/ML										Moving Images
17-6	Line Detection in Binary Document Scans: A Case Study with the International Tracing Service Archives		USA		Description Access	Computational methods	Computer vision (CV)	Holocaust									Textual Records
17-7	Auto-Categorization Methods for Digital Archives		Canada, USA		Description Records management	Computational methods	AI/ML										Data Files
17-8	Heuristics for Assessing Computational Archival Science (CAS) Research: The Case of the Human Face of Big Data Project		USA		Description Access	Iterative design											Textual Records Maps & Charts
17-9	What Can a Knowledge Complexity Approach Reveal About Big Data and Archival Practice?		NL		Access	Computational thinking											ALL

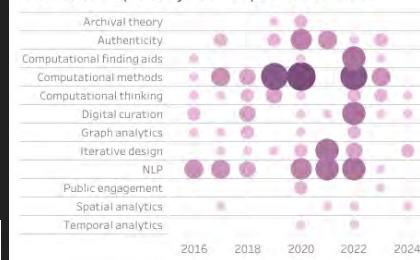
BROAD ARCHIVAL FUNCTION	CAS TOPICS	RECORD TYPE
Appraisal		Architectural & Engineering Drawings
Accessioning	Iterative design Computational thinking NLP	Artifacts
Arrangement	Graph analytics	Data Files
Description	Computational finding aids Digital curation	Maps & Charts
Preservation	Public engagement	Moving Images
Access	Authenticity	Photographs & other Graphic Materials
Records management	Archival theory Computational methods	Sound Recordings
	Spatial analytics Temporal analytics	Textual Records
		Web Pages

IEEE Big Data Conf.: Computational Archival Science (CAS) Workshops		Workshop Summary		Analysis						
#	Paper Title	Countries	Paper count	Broad Archival Function	CAS Topics	Extended CAS Topics	Social Justice Topics	Record Type		
IEEE Big Data 2023 - Sorrento, ITALY		12								
23-1	The Sequel: The Development of a Novel Context Capturing Method for the Functional Auto Classification of Records	Canada	12	Description Records management	Computational methods	AI/ML		Data Files		
23-2	Specimen Outlining: A Computational Archival Science Approach	USA		Description	Computational methods	AI/ML		Photographs & other Graphic Materials		
23-3	Who's in My Archive? An End-to-End Framework for Automatic Annotation of TV Personalities	Italy		Description	Computational finding aids	AI/ML		Moving Images		
23-4	Authenticating Citizen Journalism by Incorporating the View of Archival Diplomatics into the Verification of Open-source Investigators	Canada		Description Preservation Access	Computational methods			Moving Images		
23-5	Will Blockchain Technology Change How Well National Archives Preserve the Trustworthiness of Digital Records?: Preliminary Results of a Survey	Turkey, Canada		Description Preservation Access	Authenticity			ALL		
23-6	Analogous Analogues: Digital Twins and Hardware Tracking in GLAM Collections	Canada		Preservation Records management	Authenticity			Photographs & other Graphic Materials		
23-7	Critical Community-Centeredness: Ethical Considerations for Computational Archival Studies	USA		Creation	Public engagement			ALL		
23-8	Accelerating Precision Research and Resolution Through Computational Archival Science Pedagogy	USA		Arrangement Description Access	Computational thinking Spatial analytics		Holocaust	Textual Records		
23-9	The Utility of Standards and Good Practice Guidelines for Records Professionals: Comparing Apples, Oranges, and Other Fruits	South Africa		Records management	Computational methods			ALL		
23-10	Can GPT-4 Think Computationally about Digital Archival Practices?	USA		Description	Computational thinking	GenAI LLM	WWII Japanese American Incarceration	Textual Records Maps & Charts		
23-11	Exploring the Application of Large Language Models in Detecting and Protecting Personally Identifiable Information in Archival Data: A Comprehensive Study	China		Description Access	NLP	GenAI LLM		Textual Records		
23-12	AI-Generated Images as an Emergent Record Format	USA		Appraisal	Digital curation	AI/ML GenAI Computer vision (CV)		Photographs & other Graphic Materials		
			101							

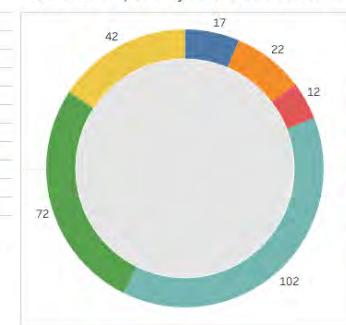
Social Justice Records by Record Type

Jennifer Proctor

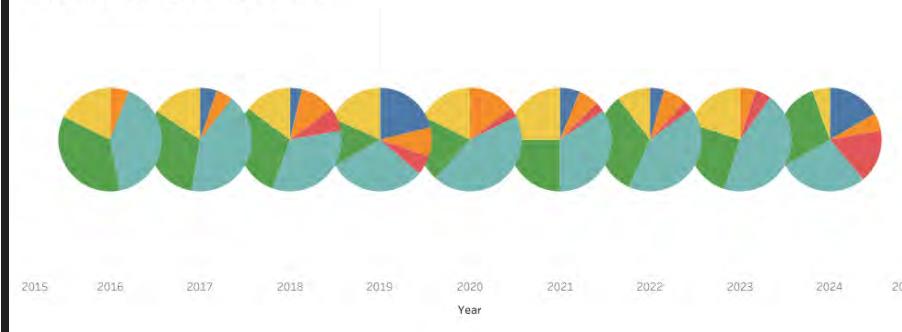

DublinCore Webinar: Oct. 19, 2023

AI & NLP for Open-Source Archival Linked Data Workflows
<https://www.dublincore.org/webinars/2023/ai-nlp-archival-linked-data/>

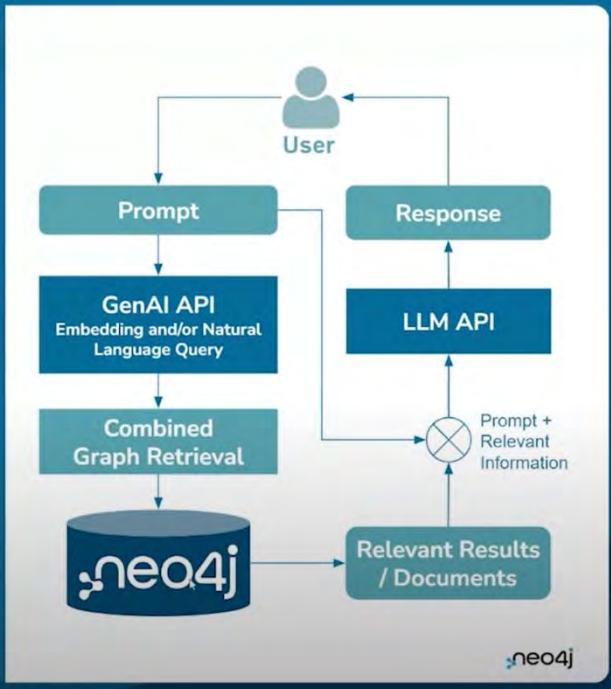

Geographic Representation of CAS Publications

Count of Papers by CAS Topics Over Time

Count of Papers by Archival Function


Count of CAS Topics

1
2
4
6
8
9


Number of Papers Per State

- Count of Accessioning
- Count of Appraisal
- Count of Arrangement
- Count of Description
- Count of Access
- Count of Preservation

Papers by Year by Archival Function

GraphRAG with Neo4j

Neo4j LLM Knowledge Graph Builder

Allison Cossette

<https://www.youtube.com/watch?v=UYJbG3p68NM>

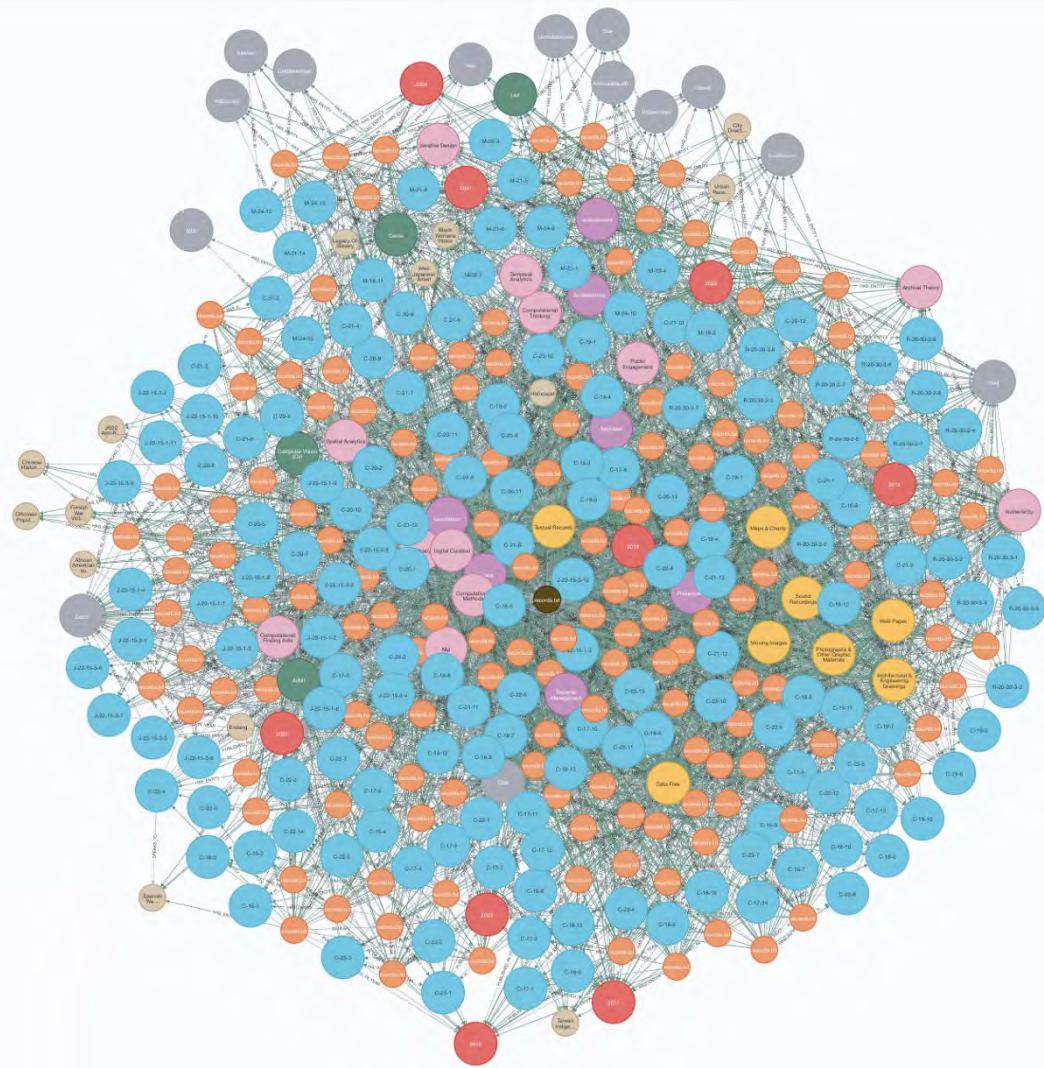
GraphRAG (Retrieval Augmented Generation with Graphs):

Merges Knowledge Graphs "with context, structure & trust".

Instead of relying only on text chunk searches (using Vector DBs), it uses graph queries to pull relevant, connected data. The claim is that it helps with "Explainable AI": every result comes with an audit trail, helping with trust and transparency.

In the Year: "2024", Paper: "M-24-9" was Published in the Journal: "ArchivesHandbook". It connects to the following Steps: "Description, Access", relates to the following Tools: "Computational thinking, Digital curation, Graph analytics, Spatial analytics, Temporal analytics", speaks to the following Topics: "City directories", and links to the following Items: "Textual Records, Maps & Charts".

In the Year: "2024", Paper: "M-24-10" was Published in the Journal: "iConference". It connects to the following Steps: "Appraisal, Accessioning, Arrangement, Description, Preservation, Access", relates to the following Tools: "Iterative design, Computational thinking, NLP, Graph analytics, Computational finding aids, Digital curation, Public engagement, Authenticity, Archival theory, Computational methods, Spatial analytics, Temporal analytics", adds to the following Technologies: "GenAI, LLM", and links to the following Items: "Architectural & Engineering Drawings, Data Files, Maps & Charts, Moving Images, Photographs & other Graphic Materials, Sound Recordings, Textual Records, Web Pages".


In the Year: "2018", Paper: "M-18-11" was Published in the Journal: "DigitalHeritage". It connects to the following Steps: "Description, Access", relates to the following Tools: "Iterative design, Digital curation, Computational methods", speaks to the following Topics: "WWII Japanese American Incarceration", and links to the following Items: "Textual Records, Maps & Charts".

In the Year: "2024", Paper: "M-24-12" was Published in the Journal: "AEOLIAN". It connects to the following Steps: "Accessioning, Arrangement, Description, Access", relates to the following Tools: "Digital curation", adds to the following Technologies: "GenAI, LLM", speaks to the following Topics: "Legacy of Slavery", and links to the following Items: "Textual Records".

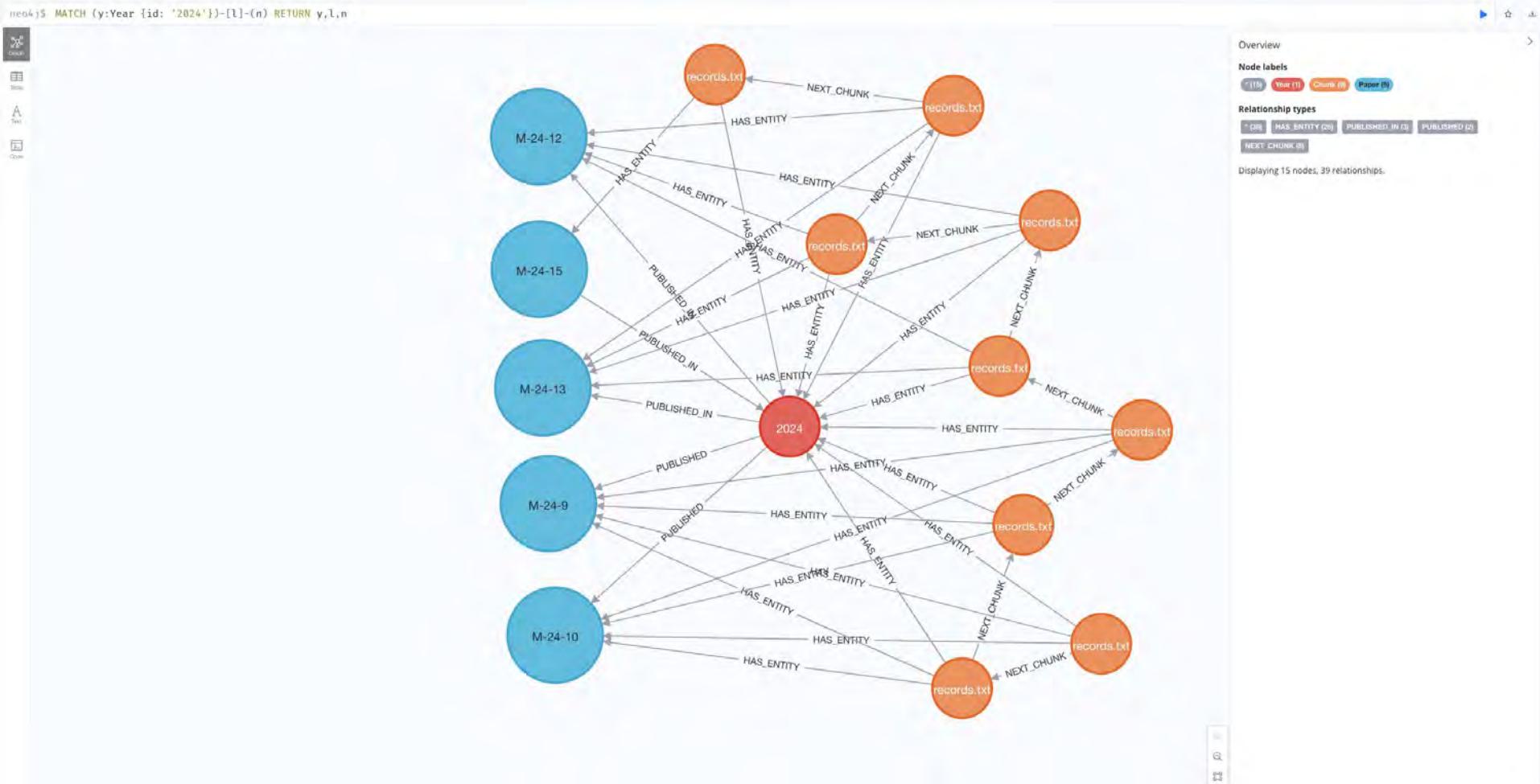
In the Year: "2024", Paper: "M-24-13" was Published in the Journal: "ISGC". It connects to the following Steps: "Accessioning, Arrangement, Description, Access", relates to the following Tools: "Iterative design, Digital curation, Spatial analytics, Temporal analytics", adds to the following Technologies: "GenAI, LLM", speaks to the following Topics: "Legacy of Slavery", and links to the following Items: "Textual Records".

In the Year: "2021", Paper: "M-21-14" was Published in the Journal: "AI&Society". It connects to the following Steps: "Description, Access", relates to the following Tools: "Iterative design, Temporal analytics", adds to the following Technologies: "AI/ML", speaks to the following Topics: "Holocaust", and links to the following Items: "Textual Records".

In the Year: "2024", Paper: "M-24-15" was Published in the Journal: "MTSR". It connects to the following Steps: "Description, Access", relates to the following Tools: "Spatial analytics, Digital curation", adds to the following Technologies: "AI/ML, Computer vision (CV)", speaks to the following Topics: "WWII Japanese American Incarceration", and links to the following Items: "Textual Records, Maps & Charts".

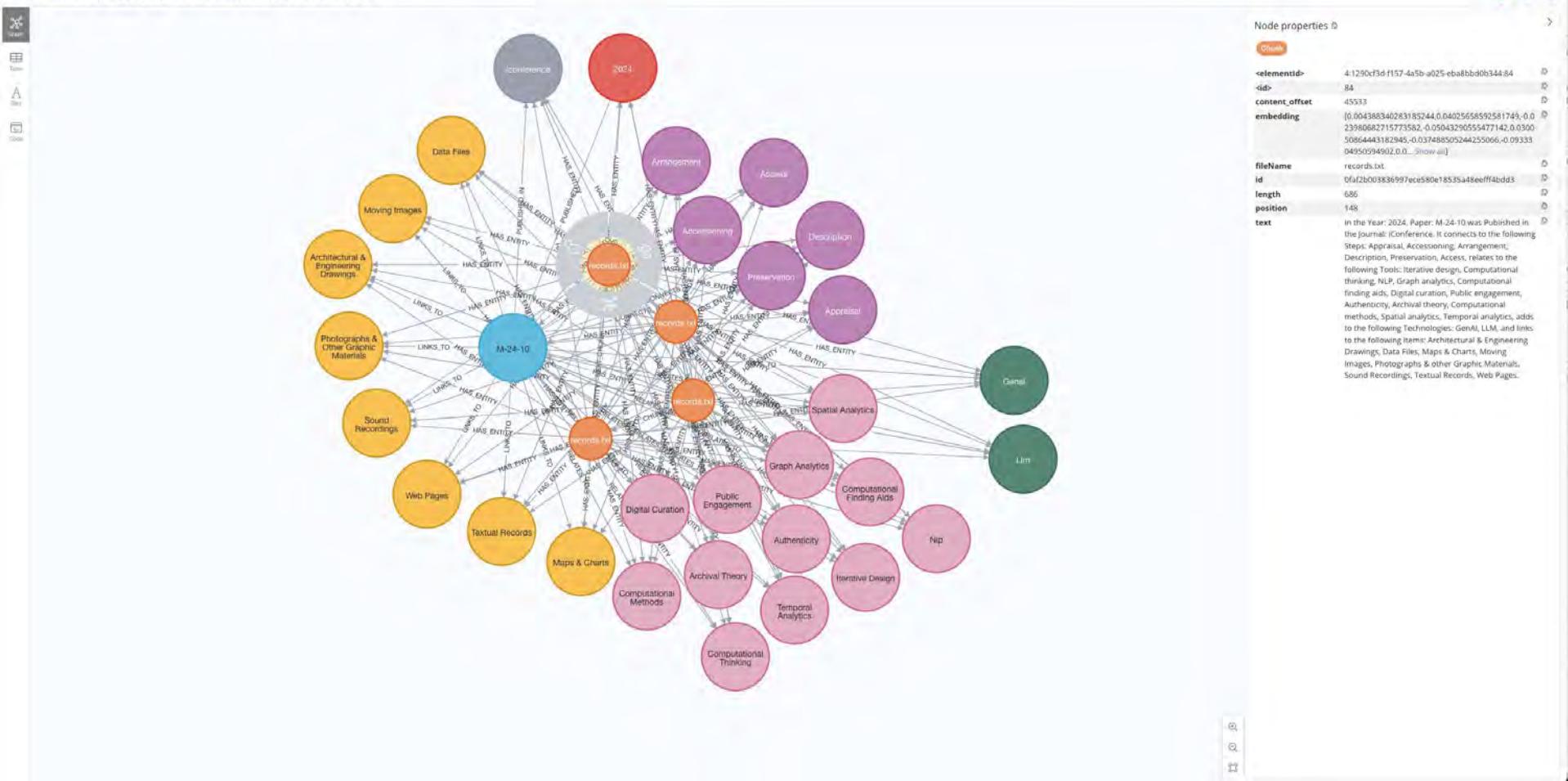
Overview

Jode labels


- (377)
- Chunk (153)
- Year (9)
- Paper (153)
- Journal (14)
- Step (7)
- Tool (12)
- Item (8)
- Technology (4)
- Topic (14)
- Bloom_Perspective (1)
- Bloom_Scene (1)
- Document (1)

Relationship types

(5376)	PART_OF (153)	NEXT_CHUNK (152)
HAS_ENTITY (3484)	SIMILAR (180)	
PUBLISHED_IN_YEAR (12)	PUBLISHED_IN_JOURNAL (12)	
CONNECTS_TO_STEP (23)	RELATES_TO_TOOL (15)	
LINKS_TO_ITEM (26)	ADDS_TO TECHNOLOGY (2)	
RELATES_TO (243)	PUBLISHED_IN (274)	
CONNECTS_TO (274)	LINKS_TO (416)	SPEAKS_TO (42)
ADDS_TO (58)	PUBLISHED (8)	
Bloom_HAS_SCENE (1)	FIRST_CHUNK (1)	


Displaying 377 nodes, 5,376 relationships.

SUBSET THE KG showing only nodes connected to Year '2024':

SUBSET THE KG showing only nodes connected to Paper 'M-24-10':

```
neo4j$ MATCH (y:Paper {id: 'M-24-10'})-[l]-(n) RETURN y,l,n
```


GraphRAG using ChatGPT4.0 prompts:

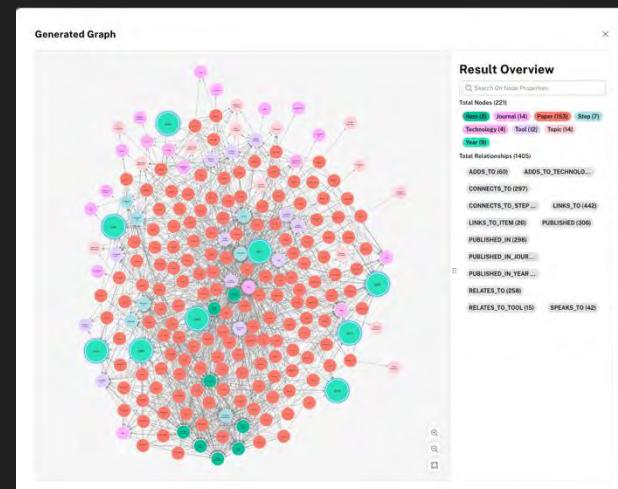
Which paper IDs related to 2024?

10/14/2024 6:03:42 PM

The paper IDs related to the year 2024 are M-24-12, M-24-10, M-24-13, M-24-15, and M-24-9.

10/14/2024 6:03:50 PM

[Details](#)


Retrieval information

To generate this response, the process took **5.63** seconds, utilizing **11579** tokens with the model **gpt-4o-2024-08-06** in **graph & vector & fulltext** mode.

Sources used [Top Entities used](#) [Chunks](#)

Paper (153) C-16-1, C-16-2, C-16-3
Journal (14) Cas, Jocch, Rmj
Topic (14) Taiwan Indigenous People, Wwii Japanese American Incarceration, Hol...
Tool (12) Nlp, Graph Analytics, Computational Finding Aids
Year (9) 2016, 2022, 2017
Item (8) Textual Records, Data Files, Architectural & Engineering Drawings
Step (7) Description, Access, Preservation
Technology (4) Ai/ML, Computer Vision (Cv), Genai

[Graph Entities used for Answer Generation](#)

Retrieval information

To generate this response, the process took **5.63** seconds, utilizing **11579** tokens with the model **gpt-4o-2024-08-06** in **graph & vector & fulltext** mode.

Sources used [Top Entities used](#) [Chunks](#)

- **Similarity Score: 0.786**
In the Year: 2020, Paper: M-20-3 was Published in the Journal: SAA. It connects to the following Steps: Description, Access, relates to the following Tools: Iterative design, Computational thinking, speaks to the following Topics: Legacy of Slavery, and links to the following Items: Textual Records.
- **Similarity Score: 0.7583**
In the Year: 2018, Paper: M-18-1 was Published in the Journal: DigitalHeritage. It connects to the following Steps: Description, Access, relates to the following Tools: Iterative design, Digital curation, Computational methods, speaks to the following Topics: WWII Japanese American Incarceration, and links to the following Items: Textual Records, Maps & Charts.
- **Similarity Score: 0.7571**

From these paper IDs which Items are there?

10/14/2024 6:04:53 PM

The paper IDs mentioned (M-24-10, M-24-12, M-24-13, M-24-15, and M-24-9) link to the following Items:

M-24-10: Architectural & Engineering Drawings, Data Files, Maps & Charts, Moving Images, Photographs & Other Graphic Materials, Sound Recordings, Textual Records, Web Pages.

M-24-12: Textual Records.

M-24-13: Textual Records.

M-24-15: Maps & Charts, Textual Records.

M-24-9: Maps & Charts, Textual Records.

10/14/2024 6:05:04 PM

Details

From these paper IDs which Steps are there?

10/14/2024 6:05:35 PM

The paper IDs you mentioned are associated with the following Steps:

M-24-10: Access, Accessioning, Appraisal, Arrangement, Description, Preservation

M-24-12: Access, Accessioning, Arrangement, Description

M-24-13: Access, Accessioning, Arrangement, Description

M-24-15: Access, Description

M-24-9: Access, Description

10/14/2024 6:05:46 PM

Details

From these paper IDs which Tools are there?

10/14/2024 6:06:20 PM

The paper IDs you mentioned are associated with the following Tools:

M-24-10: Computational Methods, Computational Thinking, Digital Curation, Graph Analytics

M-24-12: Digital Curation

M-24-13: Digital Curation

M-24-15: Digital Curation

M-24-9: Computational Thinking, Digital Curation, Graph Analytics

10/14/2024 6:06:31 PM

Richard Marciano

College of INFORMATION

Google Groups

computational-archival-science@googlegroups.com

<https://ai-collaboratory.net/>

marciano@umd.edu

<https://www.linkedin.com/in/richard-marciano/>